Kuwait University Dept. of Math. & Comp. Sci. First Exam

Math 101

Date: **Duration:** April 9, 2009

90 minutes

Calculators, mobile phones, pagers and all other mobile communication equipments are not allowed

Answer the following questions:

- 1. Use the definition of the limit to show that $\lim_{x\to -3} (2x-1) = -7$ (3 pts.)
- 2. Evaluate the following limits, if they exist:

(a)
$$\lim_{x\to 3} \frac{\sqrt{x+1}-2}{x^2-9}$$

(3 pts.)

(b)
$$\lim_{x \to 1} (x-1)^{\frac{2}{3}} \cos\left(\frac{1}{x-1}\right)$$

(3 pts.)

3. Find the vertical and horizontal asymptotes, if any, for the graph of

$$f(x) = \frac{|x-1|}{x^4 - x}$$
. (4 pts.)

4. Find the x-coordinates of the points at which the function f is discontinuous, where

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{if } x > 1, \\ \frac{\sin(x - 1)}{x^2 - 1}, & \text{if } x < 1. \end{cases}$$

Classify the types of discontinuity of f as removable, jump, or infinite.

(4 pts.)

- 5. (a) Use the Intermediate Value Theorem to show that $f(x) = x^4 + x^3 - 3x + 7$ has a horizontal tangent line. (3pts.)
 - (b) Show that the graph of $f(x) = \frac{x^{\frac{2}{3}}}{x-1}$ has a vertical tangent line.
- 6. (a) State the definition of the derivative of the function f at x = a.
 - (b) Evaluate the following limit, if it exists: $\lim_{x\to 1} \frac{x^{\frac{5}{5}}-1}{x-1}$.

- 1. (3 points) Use the definition of the limit to show that $\lim_{x\to -3} (2x-1) = -7$.
- 2. a) (3 points)

$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x^2 - 9} = \lim_{x \to 3} \left(\frac{\sqrt{x+1} - 2}{x^2 - 9} \right) \left(\frac{\sqrt{x+1} + 2}{\sqrt{x+1} + 2} \right)$$

$$= \lim_{x \to 3} \left(\frac{(x+1) - 4}{(x^2 - 9)(\sqrt{x+1} + 2)} \right) = \lim_{x \to 3} \left(\frac{1}{(x+3)(\sqrt{x+1} + 2)} \right) = \frac{1}{24}.$$

b) (3 points)

$$\lim_{x \to 1} (x-1)^{\frac{2}{3}} \cos \left(\frac{1}{x-1}\right) = 0.$$

Since
$$-1 \le \cos\left(\frac{1}{x-1}\right) \le 1$$
 we have $-(x-1)^{\frac{2}{3}} \le (x-1)^{\frac{2}{3}} \cos\left(\frac{1}{x-1}\right) \le (x-1)^{\frac{2}{3}}$.

As
$$\lim_{x \to 1} -(x-1)^{\frac{2}{3}} = \lim_{x \to 1} (x-1)^{\frac{2}{3}} = 0$$
, then by the Sandwich theorem

$$\lim_{x \to 1} (x-1)^{\frac{2}{3}} \cos \left(\frac{1}{x-1}\right) = 0.$$

3. (4 points)
$$f(x) = \frac{|x-1|}{x^4 - x} = \frac{|x-1|}{x(x-1)(x^2 + x + 1)}$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{(x-1)}{x(x-1)(x^2+x+1)} = \lim_{x \to 1^+} \frac{1}{x(x^2+x+1)} = \frac{1}{3}.$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{-(x-1)}{x(x-1)(x^{2}+x+1)} = \lim_{x \to 1^{-}} \frac{-1}{x(x^{2}+x+1)} = -\frac{1}{3}.$$

$$\lim_{x \to 0^{\pm}} f(x) = \lim_{x \to 0^{\pm}} \frac{-(x-1)}{x(x-1)(x^2+x+1)} = \lim_{x \to 0^{\pm}} \frac{-1}{x(x^2+x+1)} = \mp \infty$$

Vertical asymptote: x = 0

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty^+} \frac{|x-1|}{x(x-1)(x^2+x+1)} = 0.$$
 Horizontal asymptote: $y = 0$.

4. (4 points) f(x) is discontinuous at x = -1, 1, 2.

$$\lim_{x \to -1^{\pm}} f(x) = \lim_{x \to -1^{\pm}} \frac{\sin(x-1)}{x^2 - 1} = \lim_{x \to -1^{\pm}} \frac{\sin(x-1)}{(x+1)(x-1)} = \pm \infty.$$
 Infinite discont. at $x = -1$.

$$\lim_{x \to 1^{-}} \frac{\sin(x-1)}{x^2 - 1} = \lim_{x \to 1^{-}} \frac{\sin(x-1)}{(x+1)(x-1)} = \frac{1}{2}.$$

$$\lim_{x \to 1^+} \frac{x^2 - 4}{x - 2} = 3.$$
 Jump discontinuity at $x = 1$.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = 4.$$
 Removable discontinuity at $x = 2$.

$$f'(x) = 4x^3 + 3x^2 - 3.$$

$$f'(0) = -3 < 0$$

$$f'(1) = 4 > 0.$$

f'(x) is continuous everywhere, it is continuous on [0, 1]. As f'(0)f'(1) < 0, then by IVT there exists at least one $c \in (0,1)$ such that f'(c) = 0.

$$f(x) = \frac{x^{\frac{2}{3}}}{x-1}.$$

$$f'(x) = \frac{\frac{2}{3}x^{-\frac{1}{3}}(x-1) - x^{\frac{2}{3}}}{(x-1)^2} = \frac{2(x-1) - 3x}{\frac{1}{3}x^{\frac{1}{3}}(x-1)^2} = \frac{-x - 2}{3x^{\frac{1}{3}}(x-1)^2}.$$

 $\lim_{x\to 0} |f'(x)| = \infty$ and f(x) is continuous at x=0.

Thus, f(x) has a vertical tangent at x = 0.

6. a) (1 point)
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
.

$$f(x)=x^{\frac{2}{5}}.$$

$$f'(x) = \frac{2}{5}x^{-\frac{3}{5}}$$

$$f'(1) = \lim_{x \to 1} \frac{x^{\frac{2}{5}} - 1}{x - 1} = \frac{2}{5}.$$